Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles

نویسندگان

  • S. H. Lim
  • W. Mar
  • P. Matheu
  • E. T. Yu
چکیده

Experimental characterization and finite-element numerical simulations of the electromagnetic interaction between Au nanoparticles positioned atop a Si pn junction photodiode and incident electromagnetic plane waves have been performed as a function of wavelength. The presence of the Au nanoparticles is found to lead to increased electromagnetic field amplitude within the semiconductor, and consequently increased photocurrent response, over a broad range of wavelengths extending upward from the nanoparticle surface plasmon polariton resonance wavelength. At shorter wavelengths, a reduction in electromagnetic field amplitude and a corresponding decrease in photocurrent response in the semiconductor are observed. Numerical simulations reveal that these different behaviors are a consequence of a shift in the phase of the nanoparticle polarizability near the surface plasmon polariton wavelength, leading to interference effects within the semiconductor that vary strongly with wavelength. These observations have substantial implications for the optimization of device structures in which surface plasmon polariton resonances in metallic nanoparticles are exploited to engineer the performance of semiconductor photodetectors and related devices. © 2007 American Institute of Physics. DOI: 10.1063/1.2733649

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss mitigation in plasmonic solar cells: aluminium nanoparticles for broadband photocurrent enhancements in GaAs photodiodes

We illustrate the important trade-off between far-field scattering effects, which have the potential to provide increased optical path length over broad bands, and parasitic absorption due to the excitation of localized surface plasmon resonances in metal nanoparticle arrays. Via detailed comparison of photocurrent enhancements given by Au, Ag and Al nanostructures on thin-film GaAs devices we ...

متن کامل

Surface Enhanced Raman Scattering of Crystal Violet with Low Concentrations Using Self-Assembled Silver and Gold-Silver Core-Shell Nanoparticles

The active substrates in surface enhanced Raman scattering (SERS) spectroscopy were prepared through self-assembly of nanoparticles on functionalized glasses. Colloidal silver nanoparticles (Ag NPs) were prepared chemically in two different sizes by reduction of AgNO3 using trisodium citrate and sodium borohydride. Gold–silver core–shell nanoparticles were also prepared to compare between the o...

متن کامل

Plasmonic nanoparticle scattering for enhanced performance of photovoltaic and photodetector devices

A variety of approaches are examined for exploiting the optical properties of metal or dielectric nanoparticles, particularly those associated with surface plasmon polariton resonances, to improve the performance of semiconductor photodetectors and photovoltaic devices. Early and recent concepts for employing optical absorption and local electromagnetic field amplitude increases associated with...

متن کامل

Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles

Surface plasmon resonances in metallic nanoparticles are of interest for a variety of applications due to the large electromagnetic field enhancement that occurs in the vicinity of the metal surface, and the dependence of the resonance wavelength on the nanoparticle’s size, shape, and local dielectric environment. Here we report an engineered enhancement of optical absorption and photocurrent i...

متن کامل

Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles

An engineered enhancement in short-circuit current density and energy conversion efficiency in amorphous silicon p-i-n solar cells is achieved via improved transmission of electromagnetic radiation arising from forward scattering by surface plasmon polariton modes in Au nanoparticles deposited above the amorphous silicon film. For a Au nanoparticle density of 3.7 108 cm−2, an 8.1% increase in s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007